Counting BASIC
Counting BASIC
Counting BASIC is SUPERBASIC with 44 'Hooks' to count all mathematical activities.

Originally, I started with five hooks and counted the entries only. However, I realized not all the mathematical code in SUPERBASIC completes. This created a fascinating challenge to capture most of the early exits. And, before I continue, let me tell you what some definitions are.

			VERTICAL FORMAT		HORIZONTAL FORMAT

Addition:		Augend
		 +	Addend			Augend + Addend = Sum
			Sum

Subtraction:	Minuend
		 -	Subtrahend			Minuend - Subtrahend = Difference
			Difference

Multiplication:	Multiplicand
		 X Multiplier			Multiplicand X Multiplier = Product
			Product

How times (pun intended) have changed. My first year algebra text book, MODERN FIRST YEAR ALGRBRA by Wells and Hart published in 1928, on page 38 states 'The sign X is to be read "multiplied by."' As we seek monosyllabic words, we have changed "multiplied by" to "times" originally meaning the multiplicand,{pause}, times the multiplier. Over the past several decades, the meaning by many authors/mathematicians have changed the meaning to be the multiplier times, {pause}, the multiplicand. Nevertheless, I'm from the 'old school' and the first factor is still the multiplicand.

Please make a visual transformation of the vertical format to the horizontal format for addition, subtraction, and multiplication. The top term/factor in the vertical format is first and the bottom term/factor is second; ergo, multiplicand is first.

Division:		Dividend
			———————— = Quotient
			Divisor			Dividend ÷ Divisor = Quotient

In SUPERBASIC,
Integer‑precision operations:
· Addition:		ACUM1 (and HL) = DE + HL (DE is augend and HL is addend)
· Subtraction:	ACUM1 (and HL) = DE – HL (DE is minuend and HL is subtrahend)
· Multiplication:	ACUM1 (and HL) = DE * HL (DE is multiplicand and HL is multiplier)
· Division:		ACUM1 = DE / HL (First the dividend, DE, and divisor, HL, are converted to
single‑precision; then, single‑precision division is performed. [The result, single‑precision, is in ACUM1]).
Single‑precision operations [EDCB is LSB, nSB, MSB and exponent; ACUM1 is four bytes at 4121H]:
· Addition:		ACUM1 = EDCB + ACUM1 (augend: EDCB, addend: ACUM1)
· Subtraction:	ACUM1 = EDCB - ACUM1 (minuend: EDCB, subtrahend: ACUM1)
· Multiplication:	ACUM1 = EDCB * ACUM1 (multiplicand: EDCB, multiplier: ACUM1)
· Division:		ACUM1 = EDCB / ACUM1 (dividend: EDCB, divisor: ACUM1)

Double‑precision operations [ACUM0 is nine bytes at 411CH and ACUM2 is nine bytes at 4126H]:
· Addition:		ACUM0 = ACUM0 + ACUM2 (augend: ACUM0, addend: ACUM2)
· Subtraction:	ACUM0 = ACUM0 – ACUM2 (minuend: ACUM0, subtrahend: ACUM2)
· Multiplication:	ACUM0 = ACUM2 * ACUM0 (multiplicand: ACUM2 [sic], multiplier: ACUM0 [sic])
· Division:		ACUM0 = ACUM0 / ACUM2 (dividend: ACUM0, divisor: ACUM2)

The counters are initialized when SUPERBASIC encounters a CMD"F". CMD"F" is a program statement with no arguments or parameters. CMD"F" should not be used in the command mode, use CTRL•F in the command mode. CMD"F" initializes all counters. No other SUPERBASIC statement initializes the counters. CTRL•F requires at least 2,176 bytes of free memory to save the contents of the video display, suspend program execution, and display all zeros, providing you feedback for pressing the correct key. You must press <BREAK> to restore the display and resume program execution.

[bookmark: _GoBack]The counter values are displayed when SUPERBASIC encounters a CMD"G" and at least 2,176 bytes of free memory are available. CMD"G" is a program statement with no arguments or parameters. CMD"G" should not be used in the command mode, use CTRL•G in the command mode. CMD"G" or CTRL•G save the contents of the video display, suspend program execution, and display the counter values. You must press <BREAK> to restore the display and resume program execution.

If insufficient memory is available to save the contents of the video display, a graphic block (143d) appears in the upper right of the video and initializing the counters is inhibited.

Here is the counter display after CTRL•F:

INT Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5 Convert
 ADD: 0 0 0 0 0 0
 SUB: 0 0 0 0 0 0
 MUL: 0 0 0 0 0 0
 DIV: 0 Integer division is converted to single‑precision.
S-P Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5
 ADD: 0 0 0 0 0 0 0
 SUB: 0 0 0 0 0 0 0
 MUL: 0 0 0 0 0
 DIV: 0 0 0 0 0
 SQR: 0 0 0 0
 LOG: 0 0 0 0
 EXP: 0 0
 ^ : 0 0 0 0 0
 SIN: 0
 COS: 0
 TAN: 0 0
 ATN: 0
D-P Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5
 ADD: 0 0 0 0 0 0 0
 SUB: 0 0 0 0 0 0 0
 MUL: 0 0 0 0 0
 DIV: 0 0 0 0 0

LEGEND:
INT = integer‑precision			EXP = antilogarithm (natural)
ADD = addition				^ = exponentiation (baseexponent)
SUB = subtraction				SIN = sine of argument in radians
MUL = division				COS = cosine of argument in radians
DIV = division				TAN = tangent of argument in radians
S-P = single‑precision			ATN = arctangent
SQR = square root				D-P = double‑precision
LOG = natural logarithm

The 'Cond #n' for ADD, SUB, MUL, DIV and ^ (exponentiation) are defined as follows:

Cond #1: The first argument/base <> zero and the second argument/exponent = zero.
Cond #2: The first argument/base = zero and the second argument/exponent = zero.
Cond #3: The first argument/base = zero and the second argument/exponent <> zero.

Obviously, for division, Cond #1 and Cond #2 produce 'Division by zero' errors.

Cond #4 for single‑precision and double‑precision ADD and SUB occur when the binary magnitude of the Augend/Minuend is greater than the binary magnitude of the Addend/Subtrahend by more than the number of binary bits for the precision. e.g., if a single‑precision (single‑precision is 24 bits) Addend = 2^42 and Addend = 2^12 (binary magnitude difference is 30) then a Cond #4 is created.

Cond #5 for single‑precision and double‑precision ADD and SUB occur when the binary magnitude of the Addend/Subtrahend is greater than the binary magnitude of the Augend/Minuend by more than the number of binary bits for the precision. e.g., if a double‑precision (double‑precision is 56 bits) Addend = 2^82 and Addend = 2^12 (binary magnitude difference is 70) then a Cond #5 is created.

The Cond #n counters for integer‑precision are there for information only; whereas, the Cond #n counters for single‑precision and double‑precision are not in the Complete counters.

If a integer‑precision arithmetic function does not complete, then a conversion to single‑precision has occurred. The sum of Complete and Convert counters for an integer‑precision is equal to the Entries for that function. All integer‑precision ADD's or SUB's that have sums or differences that are beyond the integer‑precision range are converted to single‑precision ADD's [sic].

All integer‑precision DIV's are converted to single‑precision DIV's

For SQR:
Cond #1 is when the argument is less than zero (error).
Cond #2 is when the argument is zero.

For LOG:
Cond #1 is when the argument is less than zero (error).
Cond #2 is when the argument is zero (error).

For ^ :
When the base <> 0 and the exponent = 0, Cond #1 (same as above) counter increase; however, this does increase the Complete counter.
If ^ does not complete then an 'Overflow' error has occurred.

Once SUPERBASIC reaches the code to execute SIN, COS, or ATN the function completes.

If TAN does not complete then an 'Overflow' error has occurred.

The sum of Complete and all Cond #n's for a single‑precision or double‑precision function typically equal the Entries counter. The 'missing' count happens when a multiplication or division would result in an exponent smaller than SUPERBASIC can handle. No error is generated and zero becomes the product or quotient.

Please note the following:

SQR:	If the argument is > 0 and < 1 or => 2, then the following (single‑precision) also occur:
		ADD = 15, SUB = 1, MUL = 17, DIV = 1, LOG = 1, and EXP = 1
	If the argument is => 1 and < 2 then the following (single‑precision)also occur:
		ADD = 14, SUB = 1, MUL = 17, DIV = 1, LOG = 1, and EXP = 1

LOG:	If the argument is > 0 and < 1 or => 2, then the following (single‑precision) also occur:
		ADD = 8 and MUL = 9
	If the argument is => 1 and < 2 then the following (single‑precision) also occur:
		ADD = 7 and MUL = 9

In the following (single‑precision) is left out for simplicity because it is all single‑precision.

EXP:	If the argument is between -88.72284 and 88.02969 then the following also occur:
		ADD = 6, SUB = 1, and MUL = 7

^ :	If the base is = 0 and the exponent <> 0 then we have a Cond #3 (see above).
	If the base is = 0 and the exponent is = 0 then we have a Cond #2 (see above).
	If the base is <> 0 and the exponent = 0 or non-integer, then we have a Cond #1 for the exponent being 0; and, the Complete count increments and the following also occur:
		ADD = 14, SUB = 1, MUL = 17, LOG = 1, and EXP = 1
	If the base is <> 0 and the exponent is an integer > 0 and < 256, then the Complete count increments and the MUL counter increments based on the position of the binary bits in the exponent. Too complex to explain here.

SIN:	If the |argument| is < 2^-10 then you have an Entries only.
	If |argument| modulo 2π is in the first quadrant (0 to < π/2) then the following also occur:
		ADD = 4, SUB = 1, MUL = 6, and DIV = 1
	If |argument| modulo 2 π is not in the first quadrant (> π/2 and < 2 π) then the following also occur:
		ADD = 5, SUB = 2, MUL = 6, and DIV = 1

COS:	If |π/2 less argument| is < 2^-10 then you have an Entries and a SUB.
	If |argument| modulo 2 π is in the first or second quadrant (0 to < π) then the following also occur:
		ADD = 4, SUB = 2, MUL = 6, and DIV = 1
	If |argument| modulo 2 π is in the third or fourth quadrant (> π and < 2 π) then the following also occur:
		ADD = 5, SUB = 3, MUL = 6, and DIV = 1

TAN:	Performs a SIN, COS, MUL, and DIV.

ATN:	If the |argument| is < 1 then the following also occur:
		ADD = 8 and MUL = 10
	If the |argument| is => 1 then the following also occur:
		ADD = 8, SUB = 1, MUL = 10, and DIV = 1

Example:

INT Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5 Convert
 ADD: 16494 16494 32 0 423 0
 SUB: 65544 65544 0 0 1098 0
 MUL: 64359 64359 1 0 1204 0
 DIV: 1062 Integer division is converted to single‑precision.
S-P Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5
 ADD: 35028 33388 865 40 735 0 0
 SUB: 6519 5158 1218 142 0 1 0
 MUL: 40989 39558 111 69 1251
 DIV: 4010 3905 0 0 105
 SQR: 102 101 0 1
 LOG: 1652 1652 0 0
 EXP: 1638 1638
 ^ : 412 412 66 0 0
 SIN: 559
 COS: 553
 TAN: 0 0
 ATN: 2
D-P Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5
 ADD: 4364 4347 5 5 6 0 1
 SUB: 5222 5198 13 4 7 0 0
 MUL: 13913 13891 1 21 0
 DIV: 5173 5164 0 0 9

· 16,494 integer‑precision addition entries, none converted to single‑precision, the addend at zero for 32 entries, and the augend at zero for 423 entries.

· 35,028 single‑precision addition entries with 40 having both the augend and addend equal zero.

· 4,010 single‑precision division entries with 1,062 coming from integer‑precision division.

· 13,913 double‑precision multiplication entries with the multiplier equal zero for 22 occurrences.

Counting SUPERBASIC is CBASIC/CMD and Counting Hi-RES SUPERBASIC is CBASICH/CMD.

With four BASICs, I have changed the prompts to:
BASIC to identify SUPERBASIC (same as its always been),
BASICH to identify Hi-RES SUPERBASIC,
CBASIC to identify counting SUPERBASIC, and
CBASICH to identify counting Hi-RES SUPERBASIC.

You may nest a mixture of any of the four BASICs; however, CMD "S" un-nests seeking the matching count or non-count version of BASIC. If none is found, you will exit to MULTIDOS.

Example (continued):

INT Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5 Convert
 ADD: 16494 16494 32 0 423 0
 SUB: 65544 65544 0 0 1098 0
 MUL: 64359 64359 1 0 1204 0
 DIV: 1062 Integer division is converted to single‑precision.
S-P Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5
 ADD: 35028 33388 865 40 735 0 0
 SUB: 6519 5158 1218 142 0 1 0
 MUL: 40989 39558 111 69 1251
 DIV: 4010 3905 0 0 105
 SQR: 102 101 0 1
 LOG: 1652 1652 0 0
 EXP: 1638 1638
 ^ : 412 412 66 0 0
 SIN: 559
 COS: 553
 TAN: 0 0
 ATN: 2
D-P Entries Complete Cond #1 Cond #2 Cond #3 Cond #4 Cond #5
 ADD: 4364 4347 5 5 6 0 1
 SUB: 5222 5198 13 4 7 0 0
 MUL: 13913 13891 1 21 0
 DIV: 5173 5164 0 0 9

· 65,544 integer‑precision subtraction entries, none were converted to single‑precision, and the minuend and subtrahend never being zero.

· 64,359 integer‑precision multiplication entries, none converted to single‑precision with the minuend and subtrahend never being zero.

· 1,062 integer‑precision division entries and all converted to single‑precision.

· 6,519 single‑precision subtraction entries with 1,218 subtrahends equal zero when the minuend is not zero, 142 cases where both the minuend and subtrahend equal zero, and one case where the binary magnitude of the minuend is greater than the binary magnitude of the subtrahend by more than 2^24.

· 40,989 single‑precision multiplication entries with 111 multipliers equal zero when the multiplicand is not zero, 69 cases where both the multiplier and multiplicand equal zero, and 1,251 cases where the multiplicand is zero when the multiplier is not zero.

· 102 square roots with one case that the argument is equal to zero

· 1,652 logarithms with all 1,652 arguments greater than zero.

· 1,638 antilogarithms with all 1,638 arguments > -88.72284 and < 88.02969.

· 412 exponentiations with 66 having an exponent equal zero.

· etc.

Original: 22 February 2021
 Rev 1: 26 February 2021
Page 2 of 6
Page 5 of 5
